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I. INTRODUCTION

As the usefulness of space for earth observations and other scien-
tific purposes increases, the scientific community's demands for new and
additional sensing instruments grow. In almost every case, with the excep-
tion of short-lived spacecraft which return their data physically to earth,
all data taken in space must be transmitted electromagnetically back to earth
for processing and analysis.

In allocating the RF spectrum for the transmission of sensed data
from space to earth, the characteristics of the data produced by each sensor
are of primary importance. For example, data may be in the form of a con-
tinually varying voltage (analog) or may be a series of discrete pulses (digi-
tal). For the analog signal, its important characteristics to the spectrum
allocator are its highest frequency component (bandwidth) and its range from
minimum values (dynamic range or signal-to-noise ratio). For the digital
signal, the characteristic of interest is the bit rate.

RESOLUTION

Bandwidth is directly related to the number of resolution elements
sensed per unit time. There is not a generally accepted definition of resolu-
tion element; however, one reasonable approximation to the size of a reso-
lution element is the instantaneous field-of-view. A more accurate determina-
tion of resolution element occurs when the "pixel" or picture elements, as
defined by the following experiment, is used.

A detector is to complete one scan across a scene in TSO seconds.
If the scene is made up of equal width bars alternating in intensity between
the level which saturates the detector and the detector minimum sensitivity
level, the detector output will be in the form of a square wave, with the
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number of cycles equal to the number of high (or low) intensity bars. See

Figure 1-la. As the width of the bars is decreased and their number in-

creased, with the scan time held constant, the square wave starts being
rounded and eventually becomes something resembling a sine wave (Figure
1 -b).

- Further decreasing the width of the bars decreases the amplitude of

the curve until the amplitude is so small that effectively only a DC level is

produced (Figure 1-lc). A spatial resolution element RN, for purposes of
this handbook, is defined as the width of the bars at which the amplitude
of the sine wave has decreased by 50% from its maximum value. This width
is the pixel.

This width, at the specific range of the hypothetical experiment,
subtends a given angle, which is defined as the angular resolution element
in the along track dimension, R0 radians.

This handbook describes various categories of spaceborne remote

sensors and gives the methods for the calculation of their approximate
bandwidth/bit rate. The accurate bandwidth/bit rate of a sensor is de-

pendent on factors not considered herein, such as calibration information

synchronization signals, etc. For this reason, the value for bandwidth/
bit rate calculated from the forms within should be viewed as a gross first

approximation, suitable for the RF spectrum allocator. Additional elements
must be known and incorporated to give the exact data rate.

Section 2 provides a means for classifying sensors, in terms of

their operation, phenomena sensed, and form of the sensor data. Section 3

explains and gives examples of data rate calculations to illustrate the use

of the forms. Section 4 gives the forms for calculating the bandwidth or bit
rate of each sensor class. Section 5 shows the methods for converting from

analog to digital signals, and for computing the minimum digital bit rate from

an analog signal.
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II. SENSOR CLASSIFICATION

This section explains the procedure for identifying the type of sensors
under consideration and the location in the handbook containing the correct
form for the calculation of its data bandwidth/data rate.

Figure 2.1 is a diagram showing the sensor classification scheme.
It serves as a "road map" which guides the user to the correct page and form.
The diagram is entered at the point called "spaceborne sensor" and a path
followed until one of the 16 end points is reached. The route followed depends
on the characteristics of his sensor. If an instrument has more than one chan-
nel, a separate calculation must be made for each channel and the results
summed to give the total bandwidth/bit rate.

DEFINITION OF TERMS

The definitions of the terms used in Figure 2.1 are presented here
(in alphabetical order).

a. Active Sensor: A sensor which supplies energy to the
objects or phenomena being observed.

b. Analytical sensor: An analytical sensor is a device
which internally processes the received energy
and outputs only the result of this processing. The
exampl treated is an interferometer. Another example
of an analytical sensor.

c. Camera: A passive remote sensor whose output is
the intensity of radiation as a function of position
in the image plane (e.g., a picture). Each point
is the image plane corresponds to a point in the
object plane. The input is integrated over the per-
ceived spectral band.

2-1



Enter Here

Spaceborne
Sensors

Remote

Passive Active

Radiometer Camera Spectrometer Analytical Ranging iluminator

Page 4-7 Page 4-11 Page 4-12 Page 4.13

Single Multiple Single Multiple
Detector Detector Detector Detector

Page 4-10

Simultaneous Sequential
Linear Rectangular Display of Display
Array Array of ol

Page 4-6 Page 4-8 Page 4.9

Non Conical Line Non
Scanner Scanner Scanner Scanner Scanner

Page 4-1 Page 4-2 Page 4.3 Page 4-4 Page 4-5

FIGURE 2.1. SENSOR CLASSIFICATION GUIDE



d. Conical Scan: A remote sensor whose scan pattern
is a series of circles with increasing or decreasing
radii such that the volume of space scanned has the

shape of a cone.

e. Illuminator: An active remote sensor one of whose
components is used to provide a source of energy
used to observe objects or phenomena.

f. Line Scan: A sensor scanning in one direction such
that a one dimensional line of the scene is swept
across the detector.

g. Linear Array: A linear array is a group of detectors
arranged in a line.

h. Multiple Detector: A sensor is said to be of the
multiple detector type if it has more than one
sensitive element (detector) per data output
channel.

i . Non-Scan: A sensor with a fixed angular field of
view. For the instrument to view a different volume
of space, the sensor's platform must move.

j . Passive Sensor: A remote sensor which observes an
object or phenomenon without affecting the energy

.incident on the object or phenomena

k. Radiometer: A passive remote sensor which has as
its output the intensity of radiation, I [x (t), y(t)] ,
as a function of position in the object plane over a
wide spectral band.

I. Ranging Sensor: A ranging sensor is an active re-
mote sensor used to obtain information about the
distance to, or height of, objects.

m. Rectangular Array: A rectangular array is a group of
detectors arranged in a 2 dimensional pattern shaped
into a rectangle.

n. Remote Sensor: An instrument which observes
phenomena or objects at a distance.

o. Sensor: A device used to make observations of
objects or phenomena.
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p. Sequential Display: A spectrometer is said to be a

sequential display spectrometer if it produces the

spectral pattern of the scene sequentially in time

( (t) dependent on time)., e.g., filter wedge

spectrometer.

_q. Simultaneous Display: A spectrometer is said to

be a simultaneous display spectrometer if it pro-
duces the entire spectral pattern of the scene at one

time (X independent of time) e.g., grating spectro-
meter.

r. Single Detector: A sensor is said to be of the

single detector type if it has only one sensitive
element (detector) per data output channel.

s . Spectrometer: A passive remote sensor whose output is

spectral intensity versus wavelength, I ( x). The
sensor integrates the incoming radiation over the instan-
taneous field of view.

Example

In order to illustrate how a sensor may be classified, the following
example is presented. Figure 2.2 contains the type of sensor information
which might be available to the handbook user about his particular sensor,
e.g., a scanning radiometer. He must make use of his information as an
aid in following the correct path on the "road map." The handbook user
should proceed as follows:

Enter at the point marked sensor and answer a series of questions.

Ques. 1. Is the sensor active or passive?

Answer Passive. This is based on the fact that no mention of
any transmitted energy is made and also that the sensor
views "emitted radiation from the earth."

Ques. 2. Is the passive sensor a radiometer, camera, spectrometer,
or analytical?

Answer A radiometer. This answer was more difficult to reach. It
was based on the fact that the sensor "scans the earth's
surface from horizon to horizon..,. by means of a continu-
ously rotating mirror," i.e., the intensity of radiation is
a function of position x(t), y(t) where x,y, are functions
of time. Although a camera gives intensity vs position,
the position is independent of time. The user might also
be tempted to call his sensor a spectrometer because it
has 2 bands. However, the output is not intensity as a
function of wavelength. Each band is considered as a
separate channel and requires a separate form.
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Ques. 3. Do I have a single or multiple detector sensor?

Answer Single detector. This answer was based on the fact
that the sensor has two bands and two data output
channels hence, one detector for each channel.

Ques. _4. Do I have a nonscanning, conical scanning or line
scanning sensor ?

Answer A line scanner. This answer was based on an
understanding of the description of the sensor scan.
The sensor "scans . . . from-horizon to horizon..
by means of a continuously rotating mirror (48 rpm)
which is inclined 450 to its axis of rotation. "

Having answered the above questions, the user sees that he has
a passive remote sensor, called a line scanning radiometer. The form for
the calculation of the bandwidth/data rate is found on page 4-3, as indi-
cated in Figure 2.1.

The following section describes the use of the form found on page
4-3 with the scanning radiometer described in Figure 2.2 to calculate the
approximate data rate of that instrument.
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III. USE OF DATA CALCULATION FORM

The instrument considered, the one described in the previous sec-
tions, is the scanning radiometer which flew on ITOS-1. Its characteris-
tics have been given in the resume in Figure 2-2, and the correct form to use
is found on page 4-3 as determined in Section 2.

For convenience this form is reproduced as Figure 3-1. As can be
seen, opposite the calculation form is a diagram showing the sensor and de-
fining various parameters used in the calculation.

The form itself has five columns, each containing information or pro-
viding space for information to be inserted.

Under "Input", the characteristics of the instrument which are to be
specified are listed. Where the word "OR" appears within an input category,
an alternative characteristic is indicated. Only inputs from category A are
required unless otherwise directed by Column 4. "Units" indicates the units
for which a value for the input characteristic is to be supplied under "Value".
If the selection of one particular input alternative necessarily requires the
specification of other inputs, these others are listed under "Other Required
Inputs". Finally the equation(s) to be used to calculate bandwidth/bit rate
are given in the extreme righthand column.

The completed format for the Scanning Radiometer is shown in
Figure 3- 2 a and 3-2b. The instrument identification is entered at the top of
the form. Also at the top of the form is a place to identify the particular chan-
nel or band being considered, if the instrument has more than one. The
scanning radiometer has two channels, one in the IR region and the other in
the visible. Figure 3- 2 a was used for the former and 3-2b for the latter.
The ground viewing conventions used are shown in Figure 3-3.
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Passive Remote Sensor
Radiometer

Single Detector Line Scan

Instrument: Channel:

Other Calculation
Input Unit Value Required Equations

Inputs
A. Time Element

1. TSO seconds or (Bla) and (Blb), C B = 6/ 2 RTSO Hz

(B2) (B2b),and (B2c), C

or2a. TSC seconds or (Bla) and (Bib), C B = 8/2R TSCs Hz

* s (B2a) (B2b) and (B2c); C

(BI), C B e Hz
or3. TF seconds or 2 ReR TF Hz

(B2), C

B. Spatial Element

1. Angular

a. 8 radians

b. R8  radians

c. 6 radians

d. RO radians

2. Scene Referenced

a. E km 0 = 2 tan - (E/2 H)
b. RE km 2 tanRe = 2 tan (RE/2H).
c. N km - _= 2 tan- (N/2H)

d. RN km ta--------- 
R = 2 tan (RN/2H )

e. H (altitude) km

C. Intensity Element

1. S/N S/N= Dynamic Range
Precision

or 2 .a.Dynamic Range

b. Precision

FIGURE 3-1
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Passive Remote Sensor
Radiometer

Single Detector Line Scan

Instrument: ITOS-1 Scanning Radiometer Channel: IR

Other Calculation
Input_ Unit Value Required Equations

Inputs
A. Time Element

1 TS seconds or (Bla) and (Blb) , C B = 8/ 2 R6TSO Hz. SO seconds Rr 2

(B2e) (B2b),and (B2c), Ci

or2 a. TSC seconds 1.25 or (Bla) and (Bib), C B = /2RO TSC s Hz

b. s 0.42 (B2a) (B2b) and (B2c); C

(Bl), C B- Hz
or 3. TF  seconds or 2RR 0TF

(B2), C

B. Spatial Element

1. Angular

a. 8 radians 2.62 B = 575 Hz

b. Rg radians 0.007

c. 0 radians

d. R6 radians

2. Scene Referenced

a. E km 8 = 2 tan - 1 (E/2H)

b. RE km RE= 2 tan (RE/2H)
c. N km 0= 2 tan (N/2H)

d. RN km R =2 tan "(RN/2H)

e. H (altitude) km

C. Intensity Element

1. S/N S/N= Dynamic Rance
Precision

or 2.a.Dynamic Range 180 0 K-3300K

b. Precision 1oK

FIGURE 3-2a.
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Passive Remote Sensor
Radiometer

Single Detector Line Scan

Instrument: ITOS-1 Scanning Radiometer Channel: Visible

Other .Calculation
Input Unit Value Required Equations

Inputs
A. Time Element

1. Tso seconds _ _or (Bla) and (Bib), C B = / 2 ROT SO Hz-
(B2e (B2b),and (B2c), C,'

or2a. TSC seconds 1.25 (Bla) and (Bib), C B = /2RO TSC s Hz

b. s 0.42 (B2a) (B2b) and (B2c)! C

(B), C B - Hz
or 3. T seconds or 2RoR TF

(B2) , C

B. Spatial Element

1. Angular

a. 8 radians 2.62 B = 575 Hz

b. Re radians 0.007

c. 6 radians

d. Ro radians

2. Scene Referenced

a. E km 0 = 2 tan - (E/2H)

b. RE km 12 tan
c.N km --- 2 tan (RE/2)

c. N km _R 2 tan- (N/2H)

d. RN km 1Rp =2 tan (RN/2H)

e. H (altitude) km

C. Intensity Element

1. S/N 200:1 S/N=Dynamic Range
Precision

or 2.a.Dynamic Range

b. Precision

FIGURE 3-2b
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Referring to Figure 3-2a, the time element specified is the total

scan time, 1.25 seconds corresponding to 48 rpm. The scan efficiency
(s is 0.42, found by dividing the total scan of the mirror, 2 7T radians, by

the field of view, 2.62 radians.

Having selected TSc as the time element, the other required out-

puts are -seen to be either 8 and R@ or E and RE. In addition an intensity

element must be specified if the output will be digitized. In Figure 3-2a,

values for 0, Re , and Dynamic Range and Precision were inserted, based on

the information supplied by the instrument resume.

The bandwidth, B, may now be calculated from the equation

B=9/2 R8 TSC S which appears opposite the alternative selected, i.e. TSC

and (Bla) and (Blb), C. The result of the calculation, B = 575Hz, appears
on the right side of the sheet, below the list of calculation equations.

The alternatives selected in Figure 3-2b for the visible channel

are identical except for the intensity element, C. The bandwidth of the

detector output is therefore the same. The total bandwidth of the instru-

ment is the sum of the two bandwidths or 1050 Hz.
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IV. COMPUTATIONAL FORMS
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. Platform
... . ... Orbital Period

Scene TpSec

VS (km/Sec) .- -- -- SIN, Dyn Range

RN (kn)

S. ....- Detector

--- ....- Optical System

VS = Velocity of Projection of
Sensor Onto Scene

SINGLE DETECTOR NON-SCANNING RADIOMETER



Passive Sensor
Radiometer

Single Detector
Non-scanning

Instrument: . Channel

Other
Other Calculation
Req'd

Input Unit Value Equations
Inputs

A. Sensor Velocity or Time Element 40,000*
B - Hz

1. Tp second B, C 2R N Tp

or 2. VS  km/second B, C B = Hz
2RN

B. Resolution Element

1. RN km

or 2a. Rg radians RN = 2H tan (R )

b. H km

C. Intensity Element

1. S/N S/N =Dynamic Range

or 2.a.Dynamic Range Precision

b. Precision

*The approximate earth's circumference is 40,000 km.
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Resolution - -- -- l t- S/N, Dyn Range
Element .Detectora

D S . Optical Tsc---41 scan line + flybaeck
System

T F = Frame Time Tso

I Ts
Tsc

SINGLE DETECTOR CONICAL SCANNING RADIOMETER



Passive Remote Sensor
Radiometer

Single Detector Conical Scanner

Instrument: Channel:

Other Calculation
Input Unit Value Required Equations

Inputs

A. Spatial Element e
ft tan2 2

1. a. 8(angular radians . B =
swath) 2 s TFtan2 (Re)

b. Re (angular radians
or resolution)

2. a. D (ground swath) km 8 = tan- )
2

a-1 RD
b. RD (spatial km R = tan ( R

resolution) t
c. H (altitude) km

B. Time Element

1. a. TF seconds

b. g (Scan efficiency)

C. Intensity Element

1. S/N S/N =Dynamic Range

or Precision

2.a. Dynamic Range

b. Precision
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Passive Remote Sensor
Radiometer

Single Detector Line Scan

Instrument: Channel:

Other Calculation
Input Unit Value Required Equations

Inputed
A. Time Element

1. TSO seconds or (Bla) and (Blb), C B = 8/ 2 ReTSO Hz

(B2) (B2b),and (B2c), C

or2a. TSC seconds or (Bla) and (Bib), C B = /2RO TSCs Hz

b. ts (B2a) (B2b) and (B2c), q

(B), C B- Hz
or3. TF seconds or 2RR TF

(B2), C

B. Spatial Element

1. Angular

a. 8 radians

b. Re radians

c. b radians

d. R® radians

2. Scene Referenced

a. E km __= 2 tan - 1 (E/2H)

b. RE km R 2 tan (RE/2H)
c. N km _= 2 tan (N/2H)
d. RN km R =2 tan

(RN/2H)
e. H (altitude) km

C. Intensity Element

1. S/N S/N=Dynamic Range
Precision

or 2.a.Dynamic Range

b. Precision
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Scene Platform
Orbital Period
T Sec

V (km/Sec) SIN, Dyn Range

RN (knm)

Optical System /*
nd Detectors

VS = Vclocity of Projection of
Sensor Onto Sccne

MULTIPLE DETECTOR LINEAR ARRAY. 0
NON-SCANNING RADIOMETER

GROUND VIEWING CONVENTIONSh
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Passive Remote Sensor
Radiometer

Multiple Detector
Linear Array

.Non Scanner

Instrument: Channel:

Other Calculation
Input Unit Value Required Equations

Inputs

A. Time or Velocity Element

40,000 nd Hz1. Tp Seconds B,C B= 2 R40,000 nHz
o P 2 RN Tp

S2. Vs  km/second B,C B = Vs n d Hz
s 2 Rn

B. Spatial Element

1. RN km

or2.a. Re radians RN = 2H tan (2)
b. H (altitude) km

C. Array Size

1. nd '(number of elements)

D. Intensity Element

1. S/N S/N = Dynamic Range

or Precision

2. a. Dynamic Range

b. Precision

*The approximate earth's circumference is 40,000 km.
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Passive Remote Sensor Radiometer
Multiple Detector

Linear Array Line Scanner

Instrument: -Channel:

Other
Input Unit Value Required Calculation

Inputs Equations

A. Time Element

. TSO (time/scan seconds B, C, D [ log1 (S/N)]nde/Re BPS
spent viewing
scene) TSO

or

2.a. TSC (Complete seconds B, C, D TSO = TSC s

scan period)

b. Cs (scan efficiency)

B. Spatial Element

1.a. 0(scan angle) radians

b. R6 (angular radians
resolution)

or 1
2.a.E (swath coverage) Km 9= tan (2 E/H)

b.RE (spatial resolution Km R = tan (2RE/H)

in direction of scan)

c.H (orbital altitude) Km

C. Array

I. nd (number of elements)

D. Intensity Element

1. S/N S/N = Dynamic Range
or Precision

2 .a.Dynamic Range

b. Precision

4-6 kC-)



Platform Velocity

D P
12

1 11 . D12D -I F f1-FL

Output
G Intensity Levels

Optical
Scene System

Detector Array
nd Elements

* MULTIPLE DETECTOR, RECTANTULAR ARRAY, RADIOMETER
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Passive Radiometer
Multiple Detector
Rectangular Array

Instrument: Channel:

Other Calculation
Input Unit Value Required Equations

Inputs

A. Time Element
. Tn seconds d log2 (S/N)

1. TF seconds B,C C = bits
F per sec.

B. Array

1. nd (number of elements)

C. Intensity Element

1. S/N

or

2.a. Dynamic Range S/N = Dynamic Range
Precision

b. Precision
or

3. G (number of levels) S/N= G
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Detector - S/N, DynRange

x Tsc - (line interval)

Lens Shutter Image

Object
Spoaht ns scan lines (unblanked) T

r-7 TF = nsTsc = Frame Time T s
A F sc

/

GROUND WNG CONVENTCAMERA

GROUND VIEWING CONVENTIONS



CAMERA

Instrument: Channel:

Other
CalculationsInput Unit Value Required

Inputs Equations

A. Time Element

1. TO . seconds (B1 orB2 orB5 , B= /Rx orB T Hz
or B7,and B9), C 2TSO 2TSO

or x/Rx /Re
2.a. T seconds (B orB2 or B B =- orB=

or B7 and Bg), C SC ~s SC s

b. ts or B = o/R Hz
2 TSC (s

or - X/ .Y/R H3. TF  seconds (Bl and B3) B = y Hz
2 Tf ~s

or (B2 and B4) B = /R - B/RB Hz
2 Tf Cs

or (B5,B6,B7, B= 8 OR 0 OR Hz

B 8 , and Bg), C 2 Tf (s

B. Spatial Element

l..a. X m

b. Ry m

2.a. e radians

b. R . radians.

3.a. Y m

b. Ry m

4.a. $ radians

b. R/f radians

5.a. 6 radians

b. Re  radians

6.a. 0 radians

b. R radians
0 -:a(E/2H)

7.a. E Km = 2 tan(E/2H)

b.R Km R -1b.E  0K R = 2 tan (RE/2H)

8.a. N Km 0 = 2 tan (N/2H)

b. RN Km R = 2 tan (RN/2H)

9. H (Altitude) Km

C. Intensity Element

1. S/N

or 2 .a. Dynamic S/N = DynamicRanqe
Precision

b. Precision
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SINGLE DETECTOR SPECTROMETER - SIMULTANEOUS DISPLAY OF SPECTRUM



Passive Spectrometer
Single Detector

Simultaneous Display of X

Instrument: Channel:

Other Calculation
Input Unit Value Required Equations

Inputs

A. Time Elements

1. Tso Seconds B,C 2R Ts Rso

2 .a.Tsc Seconds B,C 2 R Tscos

s-

B. Spectral Elements

1. x(spectral A
coverage) o

2. RX (spectral A
resolution)

C. Intensity Elements

1. S/N S/N = Dynamic Range
or Precision

2 .a. Dynamic Range

b. Precision
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A\X2

- Detector Sampler

Output
Optical

System Time Varying
nse Spectral Filter

SceneSPECTROMETER - SEUENTIAL DISPLAY OF SPECTRUM

SPECTROMETER SEQUENTIAL DISPLAY OF SPECTRUM



Passive Spectrometer
Single Detector

Sequential Display of X

Instrument: ' Channel:

Otfher Calculation
Input - Unit Value Required Equations

Inputs

A. Time Element

1. T Seconds B,C B =so 2Tso
>/R

2.a. Tsc Seconds B,C B = 2TS2Tscs

b. t (scan efficiency)

B. Spectral Element
0

1. a. X (spectral A
coverage) o

b. RX (spectral A
resolution)

or
2. n (number of spectral bands) n = /R

C. Intensity Element S/N = Dynamic Range
Precision

1. S/N
or

2. a. Dynamic Range

b. Precision
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Detector 1, Detector 2

SSampler
Output

Spectral
Optical Disperser
System

MULTIPLE DETECTOR SPECTROMETER

'1-I,



Passive,
Spectrometer

Multiple Detectors

Instrument: Channel:

Other Calculation
Input Unit Value Required Equations

Inputs

A. Time Element B,C

1. TF Seconds C = nd log2(S/N) BPS
TF

B. Array Size

1.- n (number of detectors)

C. Intensity Element

1. S/N.

or
2.a. Dynamic Range S/N = Dynamic Range

Precision
b. Precision

or

3. G (number of levels) S/N = G
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Mirror

BeamOutput
Optical Splitter Output

ptical Interference
System Pattern at l[i ()] vs t

Detector np
Patterns
Produced
During Each
Scan

INTERFEROMETER



Analytical Sensor

Interferometer

Instrument: Channel:

Other Calculation
Input Unit Value Required Equations

Inputs

A. Time Element
n

p
1. TSO seconds B, C B =2TSO Hz

(time to scan
target)

n
or 2a.TSC seconds B, C B = 2TSC s Hz

(time for one
complete scan)

b. ts

B. Pattern Element

1. nP (number of
patterns produced
during each scan)

C. , Intensity Element

1. Detector S/N C = 2B log 2 (S/N) BPS

np log (S/N) BPS
or 2 a. Detector Dynamic Range =

SO

b. Precision S/N =Detector Dynamic Range
Precision
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Active Sensor

Ranging (Pulse)

Instrument: Channel:

Other Calculation
Input Unit Value Required Equation

Inputs

A. Time Element

1. PRF(Pulse sec B C PRF log (L/RL)
Repetition
frequency) bits/second

B. Data Element

I a. L (Range variation) meters

b. RL (Precision) meters

4-13 C)



ACTIVE SENSOR
ILLUMINATOR

Illuminators can operate in manners equivalent to radiometers,
spectrometers, or cameras. For the purposes of this handbook, computing
approximate bandwidth and data rates, the forms for the equivalent passive
sensor are applicable. Thus to compute the approximate bandwidth/data rate,
determine the characteristics of the scene and of the instrument operation
that are of interest, and use the form for that type of passive instrument. For
example, if the received radiation is reported as intensity as a function of
wavelength, one of the forms for a spectrometer should be used.
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V. DIGITAL DATA RATES FROM ANALOG SIGNALS

DIGITAL DATA RATES FROM ANALOG SIGNALS

Analog signals may be converted to digital signals,with theoretically
no loss of information, by sampling at a rate greater than or equal to twice the
highest frequency in the analog signal. The highest frequency is often ex-
pressed as, and is equivalent to, the bandwidth B.

The signal-to-noise ratio of the analog signal determines the number
of bits required to accurately report the value of each sample, if the quantiza-
tion noise is to equal the thermal noise. As Schwartz* explains, it

The factor, G, the number of distinguishable
amplitude levels, can be related to the signal-
to-noise ratio of a system. For signal amplitude
changes can be distinguished only if they are at
least comparable to the rms noise level. If we
arbitrarily assume, then, that a signal voltage
change is distinguishable if it is equal to the
rms noise voltage N, and assume a maximum
signal voltage of Sv volts, there will be Sv/N,
distinguishable signal levels. Including 0 volts
as an additional possible signal level,

G = + S-- (1)
Nv

where SV/Nv is the voltage signal-to-noise
ratio

*Information Transmission, Modulation and Noise
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Thus, assuming sampling at the minimum rate which will give theoretically
no loss of information, and quantizing each sample to one of G amplitude
levels, the digital bit rate is given by

C = 2B log2 G = 2B log 2 (1 + S/N) bits per sec (2)

(see Figure 5.1)

In practice sampling may be done more often due to operational
considerations. In this case the data rate is increased, although no more
knowledge about the analog signal is imported. The data rate, when related
to a sampling rate of P samples per second, is

C = P log2 G (3)

Note: Equation (3) is identical to Equation (2) when P = 2B and G = 1+S/N.

To illustrate the use of the above equations, the Scanning Radio-
meter on ITOS-1 will be investigated. It was shown in Section III that the
bandwidth for the IR channel was 575 Hz and its dynamic range and precision
were 180 0 -330 0 K and loK respectively. Since there are 150 l°K steps be-
tween 1800 and 330 0 K, G from equation (1) is 150. From equation 2, the
digital bit rate for this channel is

C = 2(575) log2 (150) = 8360 bits per second

For the visible channel, S/N = 200 and thus

C = 2(575) log2 (201) = 8960 bits per second

The overall bit rate is the sum of the bit rates of the two channels or 17, 320
bits per second.

This is the minimum required bit rate. If, for example, each channel
is sampled at P=2, 000 samples per second, the digital data rate would be,
for the 1 a channel

C = 2000 log2 (150) = 14,450 bits per second

and for the visible channel

C = 2000 log (201) = 15,540 bits per second

The overall bit rate in this case is 30,080 bits per second.
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Analog
Signal

Quantization Level

Highest Frequency
= BHz

T T T T4 Time

T indicates sample taken at this time.

Digital og2G Bits log2G Bit lg 2G Bits
Conversior

Bit Rate = 2B log2 G Bits Per Sec

*O

S2 T3 T4
Time

FIGURE 5.1. DIGITIZING AN ANALOG SIGNAL


